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Alternative interpretation of the sign reversal of secondary Bjerknes force acting
between two pulsating gas bubbles

Masato Ida
Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science,

the University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
~Received 29 January 2003; published 19 May 2003!

It is known that in a certain case, the secondary Bjerknes force~which is a radiation force acting between
pulsating bubbles! changes, e.g., from attraction to repulsion, as the bubbles approach each other. In this paper,
a theoretical discussion of this phenomenon for two spherical bubbles is described. The present theory based on
analysis of the transition frequencies of interacting bubbles@M. Ida, Phys. Lett. A297, 210~2002!# provides an
interpretation, different from previous ones„e.g., by Doinikov and Zavtrak@Phys. Fluids7, 1923~1995!#…, of
the phenomenon. It is shown, for example, that the reversal that occurs when one bubble is smaller and the
other is larger than a resonance size is due to the second-highest transition frequency of the smaller bubble,
which cannot be obtained using traditional natural-frequency analysis.

DOI: 10.1103/PhysRevE.67.056617 PACS number~s!: 43.20.1g, 47.55.Bx, 47.55.Dz
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I. INTRODUCTION

It is known that two gas bubbles pulsating in an acous
field undergo an interaction force called the second
Bjerknes force @1–3#. This force is attractive when th
bubbles pulsate in phase with each other, while it is repuls
otherwise; that is, the phase property of the bubbles play
important role in determining the sign of the force. In a sem
nal paper published in 1984@4#, Zabolotskaya, using a linea
coupled oscillator model, showed theoretically that in a c
tain case, the sign of the force may change as the bub
come closer to one another. This theoretical prediction w
ensured by recent experiments that captured the stable,
odic translational motion of two coupled bubbles@5#, result-
ing from the sign reversal of the force at a certain dista
between the bubbles. Zabolotskaya assumed that this
reversal is due to variation in the natural frequencies of
interacting bubbles, which results in shifts of their pulsati
phases. The theoretical formula Zabolotskaya derived
evaluate the natural frequencies of two interacting bubb
which corresponds to the one given previously by Shima@6#,
is represented as

~v10
2 2v2!~v20

2 2v2!2
R10R20

D2
v4'0, ~1!

whereR10 andR20 are the equilibrium radii of the bubbles
v10 andv20 are their partial natural~angular! frequencies,v
is the angular frequency of an external sound, andD is the
distance between the centers of the bubbles. This equa
predicts the existence of two natural frequencies per bub
and is symmetric; namely, it exchanges 10 and 20 in
subscripts of the variables to reproduce the same equa
meaning that the two bubbles have the same natural freq
cies.

During the last decade, a number of studies regarding
sign reversal of the force have been performed@5,7–14#.
Among them, Refs.@9,10,13# also considered the relevanc
of the change in the natural frequencies~or resonance fre-
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quencies@15#! to the sign reversal. In the present paper,
focus our attention on this case, although it has been sh
that other factors, such as the nonlinearity in bubble pu
tion @7,11–14# and the higher-order terms appearing in t
time-averaged interaction force@5# which has been neglecte
in previous works, can also cause the sign reversal.

In 1995, Doinikov and Zavtrak@9#, using a linear math-
ematical model in which the multiple scattering of sou
between bubbles is taken into account more rigorously, ag
predicted the sign reversal. They also asserted that this re
sal is due to the change in the natural frequencies. T
assumed that the natural frequencies of both bubbles incr
as the bubbles approach each other, resulting sometime
the sign reversal. When, for example, both bubbles are la
than the resonance size~i.e., the case ofv10,v and v20

,v) and the distance between them is large enough, t
pulsate in phase with each other. As the bubbles appro
each other, the natural frequency of a smaller bubble m
first, at a certain distance, rise above the driving frequen
and in turn the bubbles’ pulsations become antiphase;
force then changes from attractive to repulsive. When, on
other hand, one bubble is larger and the other is smaller t
the resonance size~e.g.,v10.v.v20) and the distance be
tween them is large, they pulsate out of phase with e
other and the force is repulsive. As the distance between
bubbles becomes smaller, the natural frequencies of b
bubbles may rise, and when the natural frequency of a la
bubble rises above the driving frequency, the repulsive fo
may turn into attraction. This interpretation is supported ev
in more recent papers@12,14#.

Although this interpretation seems to explain the sign
versal well, it is opposed to the prediction given by Eq.~1!,
which reveals that the higher natural frequency~converging
to the partial natural frequency of a smaller bubble forD
→` @6,16#! increases but the lower one~converging to the
partial natural frequency of a larger bubble forD→`) de-
creases as the bubbles approach each other.

In 2001, Harkinet al. @13# performed an extensive theo
retical study concerning the translational motion of tw
©2003 The American Physical Society17-1
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MASATO IDA PHYSICAL REVIEW E 67, 056617 ~2003!
acoustically coupled gas bubbles in a weak and a mode
driving sound field. Their theoretical model derived fro
first principles supports the experimental results by Bar
et al. @5#. In Sec. VII of that paper, Harkinet al. also consid-
ered the influence of the change in natural frequencies on
sign of the force in order to explain the sign reversal
v10,v andv20,v. Their explanation based on a formu
given directly by Eq.~1! is essentially the same as those
Zabolotskaya@4#, and by Doinikov and Zavtrak@9,10#.

The authors should note here that all the previous theo
ical models mentioned above candescribe~or explain! the
sign reversal. However, theinterpretation that we will pro-
vide in the present paper is different from the previous on

The aim of this paper is to give an alternative interpre
tion of the sign reversal, one that may be more accurate
the previous ones that are based on the natural-frequ
analysis. Recently, having reexamined the linear coupled
cillator model used frequently to analyze the dynamics
acoustically coupled bubbles~see Ref.@16#, and references
therein!, we found that a bubble interacting with a neighbo
ing bubble has three ‘‘transition frequencies,’’ defined asthe
driving frequencies for which the phase difference betw
an external sound and the bubble’s pulsation becomesp/2
~or 3p/2), two of which correspond to the natural freque
cies@16#. Among the three transition frequencies, the low
one decreases and the remaining two increase as the bu
approach each other. Meanwhile, forD→` only one of them
converges to the partial natural frequency of the correspo
ing bubble. Namely, the transition frequencies defined
above are asymmetric. The use of the transition frequen
would allow us an accurate understanding of the sign re
sal, because observing these frequencies provides more
tailed insights of the bubbles’ phase properties rather t
that provided by the natural-frequency analysis. Using
theory for the transition frequencies, we arrive at a no
interpretation of the sign reversal.

II. THEORIES

In this section, we briefly review the previously e
pounded theories regarding the natural frequencies, the
sition frequencies, and the secondary Bjerknes force.

A. Natural frequencies and transition frequencies

Let us consider the linear volume oscillation ofN-bubble
system immersed in an incompressible liquid. Suppose
the time-dependent radiusRj of bubblej can be represente
asRj5Rj 01ej (t), and uej u!Rj 0 ~whereRj 0 andej are the
equilibrium radius and the deviation of the radius, resp
tively, and j 51,2, . . . ,N). The radius deviation can be de
termined by solving the linear oscillator model~see, e.g.,
Ref. @17#!,

ëj1v j 0
2 ej1d j ėj52

pd,j

rRj 0
, ~2!

where
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rRj 0
2

are the partial natural~angular! frequencies of bubblej, d j is
the damping coefficient determined based on the damp
characteristics of the bubbles@18#, pd,j is the driving pres-
sure acting on bubblej, k j is the effective polytropic expo-
nent of the gas inside the bubbles,P0 is the static pressure,s
is the surface tension,r is the density of the liquid surround
ing the bubbles, and the overdots denote the time derivat
The driving pressure is represented by the sum ofpex and the
sound pressure scattered by the surrounding bubbles,ps, as

pd,j5pex1 (
k51,kÞ j

N

ps,j k .

The value ofps,j k is determined by integrating the mome
tum equation for linear sound waves,]p/]r 52r]u/]t,
coupled with the divergence-free condition](r 2u)/]r 50,
wherer is the radial coordinate measured from the center
a bubble andu is the velocity alongr. Resultantly, the driv-
ing pressure is determined as

pd,j5pex1r (
k51,kÞ j

N Rk0
2

D j k
ëk , ~3!

whereD j k is the distance between the centers of bubblej
andk.

In a single-bubble case~i.e., forN51), Eq.~2! is reduced
to

ë11v10
2 e11d1ė152

pex

rR10
. ~4!

Assuming thatpex is written in the form ofpex52Pasinvt
(Pa is a positive constant!, the harmonic steady-state solu
tion of Eq. ~4! is given by

e15KS1 sin~vt2fS1!,

with

KS15
Pa

r0R10
A 1

~v10
2 2v2!21d1

2v2
,

fS15tan21S d1v

v10
2 2v2D .

From this result, one knows that the phase difference
fS15p/2 appears~or, roughly speaking, the phase revers
takes place! only at the natural frequencyv10 @19#, and the
resonance response occurs at~or, more correctly, near! the
same driving frequency.

For N52, Eq. ~2! is reduced to

ë11v10
2 e11d1ė152

pex

rR10
2

R20
2

R10D
ë2 , ~5!
7-2
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ALTERNATIVE INTERPRETATION OF THE SIGN . . . PHYSICAL REVIEW E67, 056617 ~2003!
ë21v20
2 e21d2ė252

pex

rR20
2

R10
2

R20D
ë1 , ~6!

where D5D125D21. It is known that for a weak forcing
~i.e., Pa!P0), this system has third-order accuracy with r
spect to 1/D, although it has terms of up to first order~the
last terms! @13#. The harmonic steady-state solution fore1 is

e15K1 sin~vt2f1!,

where

K15
Pa

R10r
AA1

21B1
2,

f15tan21S B1

A1
DP@0,2p#,

with

A15
H1F1M2G

F21G2
, B15

H1G2M2F

F21G2
,

F5L1L22
R10R20

D2
v42M1M2 ,

G5L1M21L2M1 , H15L21
R20

D
v2,

L15v10
2 2v2, L25v20

2 2v2,

M15d1v, M25d2v.

Exchanging 1 and 2~or 10 and 20! in the subscripts of thes
equations yields the expressions for bubble 2.

The formula for the natural frequency, Eq.~1!, is derived
so thatK1→` for d1→0 andd2→0. Namely,

F5L1L22
R10R20

D2
v450.

As mentioned already, this equation predicts the existenc
up to two natural frequencies in a double-bubble system

The transition frequencies of bubble 1 are determined
that f1 becomesp/2 ~or 3p/2). BecauseF21G2Þ0 @16#,
the resulting formula for deriving the transition frequenc
of bubble 1 is

H1F1M2G50. ~7!

Assumingd1→0 andd2→0 reduces this to

H1F5S L21
R20

D
v2D S L1L22

R10R20

D2
v4D 50. ~8!

As was proven in Ref.@16#, this equation predicts the exis
tence of up to three transition frequencies per bubble. F
thermore, as pointed out in the same paper, the terms in
05661
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second pair of parentheses of Eq.~8! are the same as thos
on the left-hand side of Eq.~1!. These results mean that in
double-bubble case, the phase reversal of a bubble’s pu
tion can take place not only at its natural frequencies but a
at one other frequency. BecauseH1ÞH2, Eq. ~8! @and also
Eq. ~7!# is asymmetric, meaning that the bubbles have diff
ent transition frequencies.

A preliminary discussion for aN-bubble system@20#
showed that a bubble in the system has up to 2N21 transi-
tion frequencies,N ones of which correspond to the natur
frequency. Namely, a bubble has an odd number of transi
frequencies. This result can be understood as follows: E
in a multibubble case, a bubble’s pulsation may be in ph
or out of phase with a driving sound@21# when the driving
frequency is much lower or much higher, respectively, th
its natural frequencies; thus, in order to interpolate these
extremes consistently, an odd number of phase reversa
necessary@20#.

B. Secondary Bjerknes force

The secondary Bjerknes force acting between the bub
for sufficiently weak forcing is expressed with@1–5,13#

F}^V̇1V̇2&
r22r1

ir22r1i3
}K1K2 cos~f12f2!

r22r1

ir22r1i3
, ~9!

where Vj and r j are the volume and the position, respe
tively, of bubblej, ^•••& denotes the time average, andir2
2r1i5D. The sign reversal of this force occurs only whe
the sign of cos(f12f2) ~or of ^V̇1V̇2&) changes, becaus
K1.0 andK2.0. If the phase shifts resulting from the ra
diative interaction between bubbles are neglected, this fo
is repulsive whenv stays betweenv10 and v20, and is at-
tractive otherwise@1#. In the case where the radiative inte
action is taken into consideration, the frequency with
which the force is repulsive shifts toward a higher range, s
e.g., Refs.@9,10#.

The formulas reviewed above, except for that regard
the transition frequencies@Eqs.~7! and~8!#, are classical, and
almost the same ones have previously been used in Ref.@4#.
As will be shown in the following section, however, the fo
lowing investigation based on Eq.~7! coupled with Eq.~9!
gives an interpretation of the sign reversal different from
previous ones described using only the natural frequenc

III. RESULTS AND DISCUSSION

In this section, we investigate the relationship between
transition frequencies and the sign of the secondary Bjerk
force by using some examples. The first example is the c
of R1052 mm andR2055 mm, which corresponds to a cas
used in Ref.@10#. We assume that the bubbles are filled w
a gas having a specific heat ratio ofg51.4, and the sur-
rounding material is water (s50.0728 N/m, r
51000 kg/m3, P051 atm, and the speed of soundc
51500 m/s). For the damping coefficient, we adopt th
used for radiation and thermal losses:
7-3
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FIG. 1. Transition frequenciesv1 ~rad/s! and
v2 ~rad/s! for R1052 mm, R2055 mm, and the
reduced damping, normalized byv10 ~rad/s!. The
dashed lines show the transition frequencies t
do not cause the resonance.
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v2Rj 0

c
1b th,j , ~10!

where the thermal damping coefficientb th,j and the effective
polytropic exponentk j are determined@9,18,22# by

b th,j5
v j 0

2

v
dth,j ,

k j5gF ~11dth,j
2 !S 11

3~g21!~sinhX2sinX!

X~coshX2cosX! D G21

,

with

dth,j53~g21!

3
X~sinhX1sinX!22~coshX2cosX!

X2~coshX2cosX!13~g21!X~sinhX2sinX!
,

X5Rj 0~2v/xG!1/2,

where we setxG5231025 m2 s21.
05661
In order to clarify the following discussion, we firs
present results for the idealized condition ofd j'0 by reset-
ting d j→d j /100, and subsequently provide results given
the direct use of Eq.~10!. Figure 1 shows the transition fre
quencies of the bubbles,v1 andv2, calculated using Eq.~7!
with the reduced damping, normalized byv10 (5v1 for D
→`). In those figures,l denotes the normalized distanc
defined asl 5D/(R101R20). As mentioned previously, we
can observe three transition frequencies, only one of wh
converges tov j 0 of the corresponding bubble forl→`. The
second-highest transition frequency of bubble 2 is alm
equal to the highest one of bubble 1; thus, the highest on
bubble 2 is higher than that of bubble 1. The second-high
one of bubble 1 and the highest one of bubble 2 do not ca
the resonance response@16#.

The dashed curves displayed in Fig. 2~a! show f1 , f2,
and cos(f12f2), respectively, as functions ofl. Here the
driving frequency is assumed to bev51.01v10, i.e., slightly
abovev10. ~In the present study, the driving frequency is s
asv'v10 or v'v20, so that the sign reversal takes place
a sufficiently largel where the accuracy of Eqs.~5! and~6! is
guaranteed.! As mentioned in Sec. I, it is known already th
d
-

FIG. 2. f1 /p, f2 /p, and
cos(f12f2) for ~a! v51.01v10

~rad/s! and ~b! v51.03v20 ~rad/
s!, as functions ofl. The dashed
curves and the solid lines show
the results given using the reduce
damping and the real damping, re
spectively.
7-4
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FIG. 3. Same as in Fig. 1, but for the re
damping.
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the sign reversal can take place wherev.v10.v20 or v10
.v.v20; the present setting corresponds to the form
case. We can observe one and two sharp shifts off1 andf2,
respectively. Atl'3, bothf1 andf2 shift almost simulta-
neously, but the sign reversal does not occur because
phase differencef12f2 is hardly changed. Atl'13, only
f2 shifts, resulting in the sign reversal. In the former ca
the phase shifts are caused by the natural frequencies
mentioned previously, whend j'0, both the bubbles hav
~almost! the same natural frequencies. Thus, simultane
phase shift appears. The change off2 in the latter case is
apparently due to the highest transition frequency of bub
2, which cannot be obtained by the traditional natur
frequency analysis. Namely, this sign reversal cannot be
terpreted by using only the natural frequencies.

We should note here that, to compute the phase delayf1
and f2, we used the ‘‘atan2(a,b)’’ function in the C lan-
guage, which returns tan21(b/a)P@2p,p#, and, further-
more, adopted the operation

f j5H atan2~Aj ,Bj !12p if atan2~Aj ,Bj !,0

atan2~Aj ,Bj ! otherwise,

in order to obtain results forl @1 which are consistent with
the established knowledge of single-bubble dynamics, e
f j'p whenv.v j 0 andd j'0 ( j 51 or 2).

The dashed curves displayed in Fig. 2~b! show results for
v51.03v20 (50.413v10), i.e., for v10.v.v20. In this
case, we can observe only one sharp shift off1 at l'12,
causing the sign reversal. This shift off1 is due to the
second-highest transition frequency of bubble 1~this fre-
quency also not corresponding to the natural frequency!, be-
cause the lowest transition frequencies of both the bub
decrease asl decreases.

These results reveal that in the above cases, the trans
frequencies other than the natural frequencies cause the
reversal of the secondary Bjerknes force. This conclusio
obviously different from the previous interpretations d
scribed by means of the natural frequencies@4,9,10,13#.

It is interesting to point out that in the case wherev
.v10.v20 and v'v10, the phase delay of the large
bubble was sometimes greater thanp @see Fig. 2~a!#. Such a
result cannot be given by a single-bubble model that pred
a phase delay of up top. This may be explained as follows
When v.v10.v20 is true andl is sufficiently large, both
bubbles pulsate out of phase withpex, emitting sound waves
whose phases are also out of phase withpex. As l decreases
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if v'v10, the amplitude of the sound wave emitted b
bubble 1 measured atr2 can be greater than the amplitude
pex. In this situation, bubble 2 is driven by a sound wa
whose oscillation phase is delayed by almostp from that of
pex. This results inf2.p, because the pulsation phase
bubble 2 delays further from that of the sound wave.

We show here the results given by using Eq.~10! in order
to examine the influences of the damping effects on the s
reversal and phase shifts. Figure 3 shows the recalcul
transition frequencies. As already discussed@16#, when the
damping effects are not negligible, the bubbles have only
transition frequency in the large-l region. The solid curves
displayed in Fig. 2 showf1 , f2, and cos(f12f2) for v
51.01v10 and v51.03v20. Their tendencies are similar t
those given with the reduced damping, although their profi
are smoothed significantly~such a smoothing of the phas
change by the damping effects is well known for a sing
bubble case! and the points at which the sign reversal tak
place are shifted slightly; the positions of these points are
the case ofv51.01v10, l'13.59 for d j and l'14.57 for
d j /100, and, in the case ofv51.03v20, l'12.66 ford j and
l'12.48 ford j /100. Moreover,f2 for v51.01v10 does not
exceed 3p/2 ~the minimum value ofv2 larger thanv10 is
1.027v10); even so, the sign reversal occurs at almost
same point as that given withd j /100, away from the point
wheref15p/2. This result may be interpreted as the ‘‘ve
tige’’ of the highest transition frequency of the larger bubb
having given rise to this sign reversal. Detailed theoreti
discussions for the slight shift inl for cos(f12f2)50 due to
the damping effects will be provided in a future paper.

Next, we show results for smaller bubbles (R1051 mm
andR2054 mm). The value for viscous loss is used for th
damping coefficients, i.e.,

d j5
4m

rRj 0
2

, ~11!

where the viscosity of waterm51.00231023 kg/(m s). Be-
cause the thermal effect is neglected,k5g51.4. Figure 4
shows the transition frequencies, and Fig. 5 showsf1 , f2,
and cos(f12f2) for v51.01v10 and v51.03v20
(50.201v10) with d j /100 ~the dashed curves! and d j ~the
solid curves!. The qualitative natures of these results a
quite similar with the previous ones; thus, additional disc
sion may not be necessary. Using this example, we perf
here a comparative study of the theoretical results with
7-5
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FIG. 4. Transition frequenciesv1 ~rad/s! and
v2 ~rad/s! for R1051 mm, R2054 mm, and the
real damping, normalized byv10 ~rad/s!.
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numerical results in order to confirm the former’s corre
ness. In the numerical experiment, we employ the coup
Rayleigh-Plesset-Noltingk-Neppiras-Poritsky ~RPNNP!
equations~see, e.g., Ref.@16#!;

R1R̈11
3

2
Ṙ1

22
1

r
pw,152

1

r Fpex1
r

D

d

dt
~R2

2Ṙ2!G ,
R2R̈21

3

2
Ṙ2

22
1

r
pw,252

1

r Fpex1
r

D

d

dt
~R1

2Ṙ1!G ,
where

pw, j5S P01
2s

Rj 0
D S Rj 0

Rj
D 3k

2
2s

Rj
2

4mṘj

Rj
2P0 .

This system of nonlinear differential equations are solv
numerically through the use of the fourth-order Runge-Ku
method in whichR1 , R2 , Ṙ1, andṘ2 are used as depende
variables, and̂ R1

2Ṙ1R2
2Ṙ2& @}^V̇1V̇2& in Eq. ~9!# is then

calculated. The time average is performed during a su
05661
-
d

d
a
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ciently large period after the transients have decay

Normalizing ^R1
2Ṙ1R2

2Ṙ2& by R10
2 R20

2 max(uR1(t)
2R10u)max(uR2(t)2R20u)v2/2 yields the numerical approxi
mation of cos(f12f2), where max(uRj(t)2Rj0u) indicates the
pulsation amplitude of bubblej given numerically. The am-
plitude of the external sound is set toPa50.01P0. In Fig. 6,
the numerical and the theoretical results are displayed
piles. These results are in excellent agreement, confirm
the correctness of the theoretical results given above. In
same figure, we have shown additionally sgn(^V̇1V̇2&) for
Pa50.2P0 ~the dots! and 0.5P0 ~the dash-dotted curves! in
order to briefly investigate nonlinear effects on the sign
versal, where sgn(X)51 for X.0 and sgn(X)521 other-
wise. In plotting these results, we omitted the data in the c
whereR1(t)1R2(t).D was observed during the comput
tion. As is clearly shown, increasing the driving pressu
reduces the distance for which the sign reversal takes pl
This result appears to be consistent with the well-kno
nonlinear phenomenon that a strong driving pressure
creases a bubble’s~effective! resonance frequency, see, e.
Refs. @2,3#. ~Imagine that the transition frequencies show
e

FIG. 5. f1 /p, f2 /p, and
cos(f12f2) for ~a! v51.01v10

~rad/s! and ~b! v51.03v20 ~rad/
s!. The dashed curves denote th
results for the reduced damping.
7-6
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FIG. 6. Comparison between the theoretic
and the numerical results. The lines and t
circles denote the theoretical and the numeri
results, respectively, of cos(f12f2) for v
51.01v10 ~rad/s! and 1.03v20 ~rad/s!. Addition-

ally, sgn(̂ V̇1V̇2&) for Pa /P050.2 ~the dots! and
0.5 ~the dash-dotted curves! are plotted for a brief
investigation of nonlinear effects.
ds
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the
e.g., in Fig. 1 decrease but the driving frequency hol
which might shorten the distance forF50.! More detailed
and concrete discussions on the nonlinear effects will be
vided in a future paper.

To summarize our discussion, we compare the presen
terpretation with the previous ones. Figure 7~a! shows the
dependency of natural frequencies onl, assumed by Doini-
kov and Zavtrak@9,10#. Their assumption explains the sig
reversal occurring wherev10.v.v20, for example, as tak-
ing place aroundl at whichv25v is true. Yet, as mentioned
their assumption is inconsistent with the theoretical res
regarding natural frequencies given previously@4,6# @see Fig.
7~b!#. On the other hand, it is difficult to determine by on
observing the natural frequencies that the sign reversal
take place forv10.v.v20, because the classical theo
05661
,

o-

n-

ts

an

does not show that a kind of characteristic frequency ex
in the frequency region betweenv10 and v20. The present
theory explains the sign reversal in this case as taking p
around l at which v15v is true @see Fig. 7~c!, where we
assume for simplicity that the damping effect is negligibl#,
and is consistent with the theory for natural frequencies
cause the transition frequencies include the natural frequ
cies.

IV. CONCLUSION

We have investigated the influences of change in the tr
sition frequencies of gas bubbles, resulting from their rad
tive interaction, on the sign of the secondary Bjerknes for
The most important point suggested in this paper is that
o
of
cal

of
ach
l

s-
s-

ut
FIG. 7. Characteristic frequencies of tw
coupled bubbles and different interpretations
the sign reversal. The dashed lines show a typi
driving frequency lying betweenv10 and v20,
where v10.v20 is assumed. Doinikov and
Zavtrak assumed that the natural frequencies
both the bubbles increase as the bubbles appro
each other~a!. Assuming this, the sign reversa
for v10.v.v20 seems to be explained. This a
sumption is, however, inconsistent with the cla
sical theory for natural frequencies~b!. The
present theory can explain this reversal witho
such an inconsistency~c!.
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transition frequencies that cannot be derived by the natu
frequency analysis cause the sign reversal in the case
both v.v10.v20 and v10.v.v20. This interpretation
has not been proposed previously. The present results
show that the theory given in Ref.@16# for evaluating the
transition frequencies of interacting bubbles is a reason
tool for accurately understanding the mechanism of this
versal. In a paper currently in preparation@23#, we will use
the direct numerical simulation technique@24,25# to verify
the present theoretical results.

Lastly, we make further remarks regarding the results
scribed in Ref.@10#. In that paper, the frequency of the e
ternal sound (f 5v/2p) was assumed to bef 563 kHz,
which is 60 times higher than the partial resonance freque
of a bubble ofR053 mm ~1.094 kHz!; nevertheless, the re
versal was observed at a very smalll. ~In Ref. @9#, the driving
frequency is assumed to be comparable to the partial na
.

n,

05661
l-
of

lso

le
-

-

cy

ral

frequencies of bubbles, and the bubble radii are several
of micrometers.! This result reveals implicitly that the math
ematical model proposed in Ref.@9#, which takes into ac-
count the shape deviation of the bubbles, predicts suc
strong increase of the transition frequencies of clos
coupled large bubbles that this increase cannot be expla
by the classical model for coupled oscillators used he
Derivation of the transition frequencies of Doinikov an
Zavtrak’s model would be an interesting subject for futu
study.
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